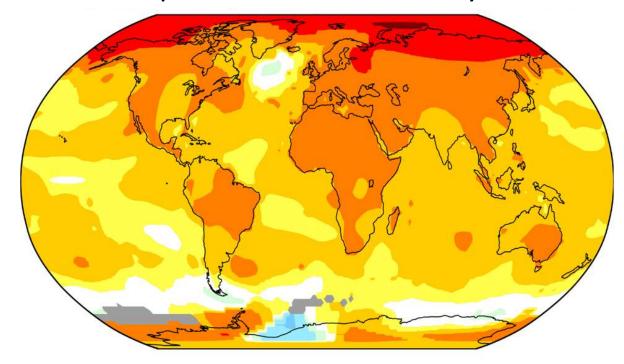


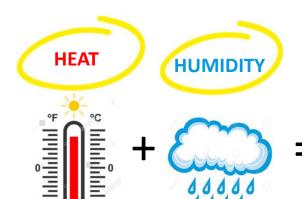
HEAT STRESS
in heifers
during the milky phase

Context




Context

Temperature evolution over the last 50 years



Average 2011-2020 vs reference 1951-1980

Heat stress in animals

HEAT STRESS

(Temperature Humidity Index)

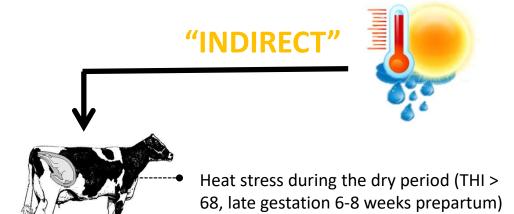
exceed the zone of thermoneutrality of the animal

(comfort zone).

How to measure Heat Stress?

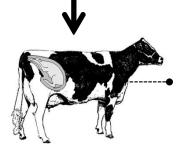
T.H.I.« Temperature Humidity Index »

= temperature index felt by animals


Measured by the formula (1,8 x T $^{\circ}$ + 32) - (0,55 - 0,0055 x $^{\circ}$ of humidity) x (1,8 x T $^{\circ}$ - 26)

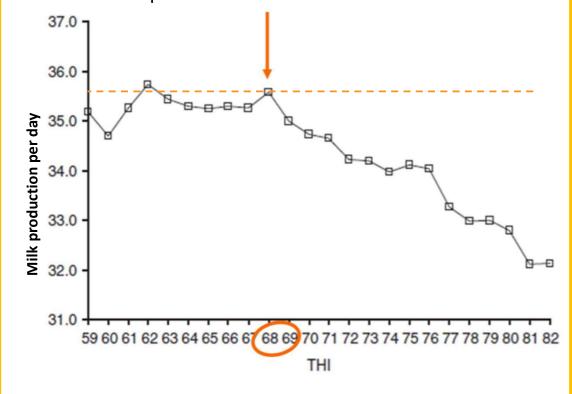
Humidity

									•	101		410	7						
		0	5	10	15	20	25	30	40	45	50	55	60	65	70	75	80	85	90
	21	6	64	64	64	65	65	65	66	66	67	67	67	68	68	68	69	69	69
	22	64		65	65	66	66	66	67	67	68	68	69	69	69	70	70	70	71
	23	65	65		66	67	67	67	68	69	69	70	70	70	71	71	72	72	73
	24	66	66	6,	7	68	68	69	70	70	70	71	71	72	72	73	73	74	74
	25	67	67	68	66	7	69	70	71	71	72	72	73	73	74	74	75	75	76
	26	67	68	69	69	7	J.		72	73	73	74	74	75	75	76	77	77	78
	27	68	69	69	70	71	1.	ند	73	74	74	75	76	76	77	77	78	79	79
	28	69	70	70	71	72	72	,	74	75	76	76	77	78	78	79	80	80	81
	29	70	71	71	72	73	73	74		76	77	78	78	79	80	81	81	82	83
	30	71	71	72	73	74	74	75	77		78	79	80	81	81	82	83	84	84
_	31	71	72	73	74	75	76	76	78	79		80	81	82	83	84	85	85	86
	32	72	73	74	75	76	77	77	79	80	81		83	84	84	85	86	87	88
	33	73	74	75	76	77	78	79	80	81	82	83		85	86	87	88	89	90
	34	74	75	76	77	78	79	80	82/	83	84	84	85		87	88	89	90	91
	35	75	76	77	78	79	80	81	83	84	85	86	87	88		90	91	92	93
	36	75	77	78	79	80	81	82	84	85	86	87	88	89	9٤		33	94	95
	37	76	77	79	80	81	82	83	85	86	87	89	90	91	92	95	٦4	95	96
	38	77	78	79	81	82	83	84	86	88	89	90	91	92	93	95	-	97	98
	39	78	79	80	82	83	84	85	88	89	90	91	92	94	95	96	97	```	100
	40	79	80	81	82	84	85	86	89	90	91	93	94	95	96	98	99	100	101
	41	80	81	82	83	85	86	87	90	91	93	94	95	97	98	99	101	102	103



→ Decreased milk production

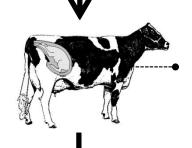
"INDIRECT"



Heat stress during the dry period (THI > 68, late gestation 6-8 weeks prepartum)

→ Decreased milk production

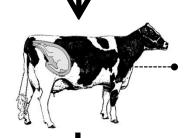
Milk production according to THI on a population of 1 million dairy cows in Italy.


The THI threshold beyond which an impact on milk production is observed is 68-69.

"INDIRECT"

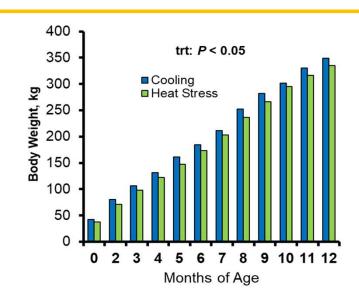
Heat stress during the dry period (THI > 68, late gestation 6-8 weeks prepartum)

→ Decreased milk production


Low birthweight
Decreased IgG absorption
Compromised immunity

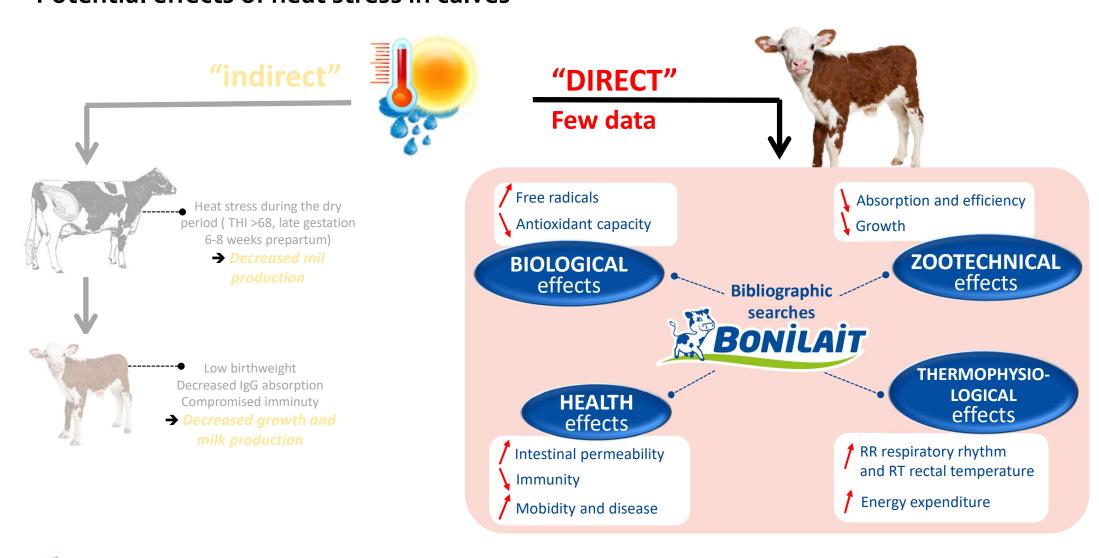
→ Decreased growth and milk production

"INDIRECT"

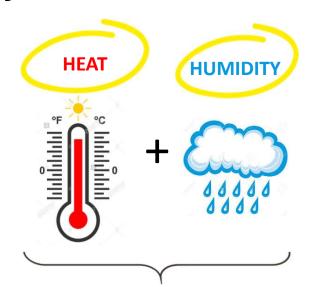

Heat stress during the dry period (THI > 68, late gestation 6-8 weeks prepartum)

→ Decreased milk production

Low birthweight
Decreased IgG absorption
Compromised immunity


→ Decreased growth and milk production

Effects of heat stress in utero

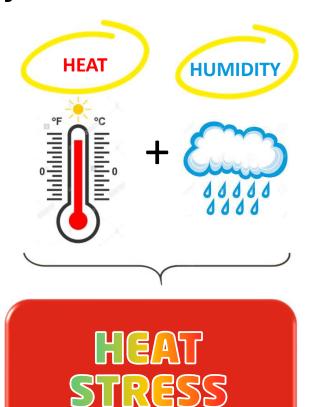

- -> Decreased growth and immunity of young heifer
- Negative effect on birth weight (- 4,7 kg to -6 kg)
- Negative effect on growth until weaning (10,3 to 12,6 kg)
- Negative effect on 1st month immunity (absorption of IgG 19,2% vs 33,6% under normal conditions)
- -> <u>But also epigenetic effects leading to a decrease of milk production</u> (-3,5 L/d)
- Less secretory cells in the breast
- Impact on liver development

Objectives

HEAT STRESS

Determination of critical THI in preweaned calves

(Temperature Humidity Index)



Purpose a nutritional solution

to mitigate negative effects of heat stress during milky phase.

Objectives

Determination of critical THI in preweaned calves

(Temperature Humidity Index)

How?

2 trials in partnership Bonilait & University of Milan

2 livestock farms in Lombardie

> 400 cows followed by the University of Milan

40 heifers Trial batch

40 heifersControl batch

Birth>weaning

Hot summer season

Summer 2019 (trial 1)

Summer 2020 (trial 2)

June to September THI* > 80

*THI was calculated from data recorded by the machine

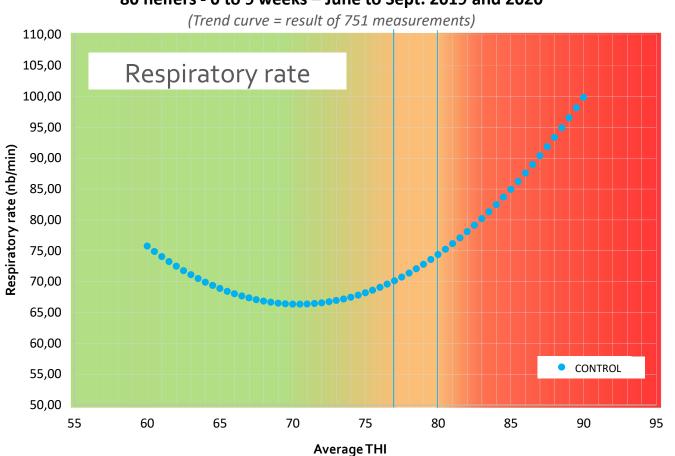
Average health conditions

(50,6 % of sick animals)

Studied parameters:

751 measures on respiratory rate

177 measures on rectal temperature



BONILAIT APPROACH based on RR

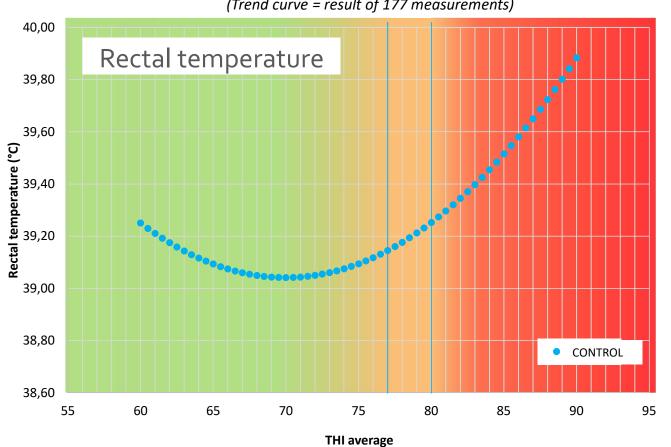
80 heifers - 0 to 9 weeks - June to Sept. 2019 and 2020

Low heat stress (RR<70)	THI average* < 77
Moderate heat stress (RR 70-75)	THI average* 77-80
High heat stress (RR>75)	THI average* > 80

*THI average = average of the readings between 8h to 20h

The results obtained during the trials allowed us to determine the threshold of

critical THI at 80


BONILAIT APPROACH

based on RR

80 heifers - 0 to 9 weeks - June to Sept. 2019 and 2020

(Trend curve = result of 177 measurements)

Low heat stress (RR<70)	THI average < 77
Moderate heat stress (RR 70-75)	THI average 77-80
High heat stress (RR>75)	THI average > 80

*THI average = average of the readings between 8h to 20h

The results obtained during the trials allowed us to determine the threshold of

critical THI at 80

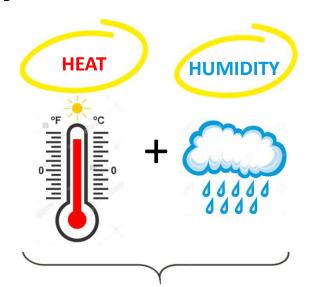
Humidity

		_																
	0	5	10	15	20	25	30	40	45	50	55	60	65	70	75	80	85	90
21	63	64	64	64	65	65	65	66	66	67	67	67	68	68	68	69	69	69
22	64	CONT.	7	65	66	66	66	67	67	68	68	69	69	69	70	70	70	71
23	65			66	67	67	67	68	69	69	70	70	79	33	71	72	72	73
24	66			67	68	68	69	70-	กไอ้เ	M	O 18	المارح	72	72	73	73	74	74
25	67	67	68	M	mi		المح	371	71	72	72	73	73	74	74_	75	75	76
26	67	68	69	69	70	70	71	72	73	73	74	74	75	75	76	77	77	78
27	68	69	69	70	71	71	72	73	74	74	75	76	76	77	77	78	79	79
28	69	70	70	71	72	72	73	74	75	76	76	77	78	78 .	79	80	80	81
29	70	71	71	72	73	73	74	76	76	77	78	78	79	80	81	81	82	83
30	71	71	72	73	74	74	75	77	78	78	79	80	81	81	82	83	84	84
31	71	72	73	74	75	76	76	78	79	80	80	81	82	83	84	85	85	86
32	72	73	74	75	76	77	77	79	80	81	82	83	84	84	85	86	87	88
33	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
34	74	75	76	77	78	79	80	82	83	84	84	85	86	87	88	89	90	91
35	75	76	77	78	79	80	81	83	84	85	86	87	88	89	90	91	92	93
36	75	77	78	79	80	81	82	84	85	86	87	88	89	90	94	2 55	94	95
37	76	77	79	80	81	82	83	85	86	87	89	H	59	35	93	94	95	96
38	77	78	79	81	82	83	84	86	88	89	90	91	92	93	95	96	A A	98
39	78	79	80	82	83	84	85	88	89	90	91	92	94	95	96	9;		100
40	79	80	81	82	84	85	86	89	90	91	93	94	95	96	98	99		101
41	80	81	82	83	85	86	87	90	91	93	94	95	97	98	99	101	102	103

For the 1st time in preweaned calves,

the original approach of Bonilait allows to determine the threshold of critical THI.

Low heat stress (RR<70)	THI average < 77
Moderate heat stress (RR 70-75)	THI average 77-80
High heat stress (RR>75)	THI average > 80



- Beyond a THI of 80, young calve can no longer efficiency regulate its temperature:
 - → Increased respiratory rate, discomfort.

Objectives

Determination of critical THI in preweaned calves

(Temperature Humidity Index)

Purpose a nutritional solution

to mitigate negative effects of heat stress during milky phase.

Purpose a nutritional solution to mitigate negative effects of heat stress during the milky phase.

How?

2 trials in partnership Bonilait & University of Milan

2 livestock farms in Lombardie > 400 cows followed by the

University of Milan

40 heifers
Trial batch
40 heifers
Control batch
Birth>weaning

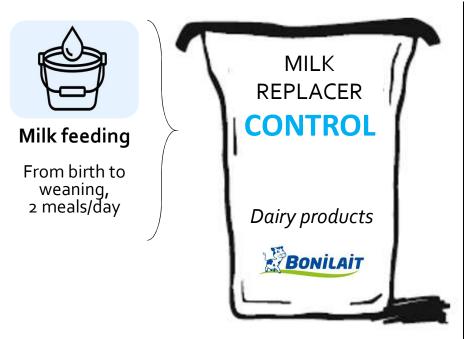
Summer 2019 (Trial 1)
Summer 2020 (Trial 2)
June to September
THI* > 80

* THI was calculated from data recorded by the machine

Average health conditions (50,6 % of sick animals)

Studied parameters :

- ✓ Growth
- ✓ Feed efficiency
- ✓ Health status
- ✓ RR (1489 measures) & RT (352 measures)
- ✓ Antioxidant status



Purpose a nutritional solution to mitigate negative effects of heat stress during the milky phase.

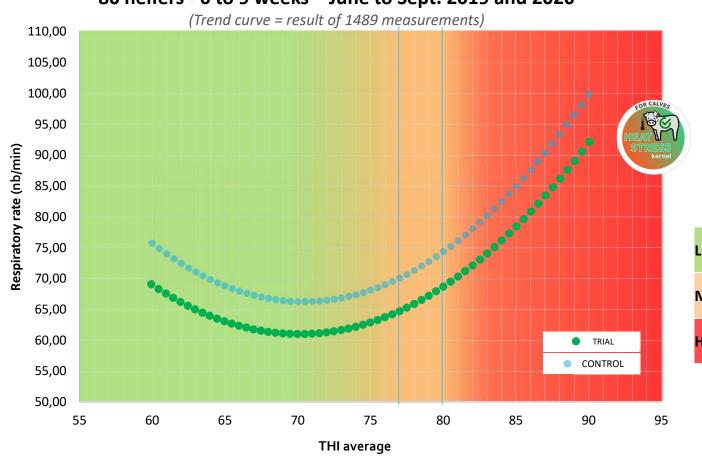
2 trials in partnership Bonilait & University of Milan



Purpose a nutritional solution to mitigate negative effects of heat stress during the milky phase.

Kernel « Heat Stress Control »

Incorporated into milk feeding



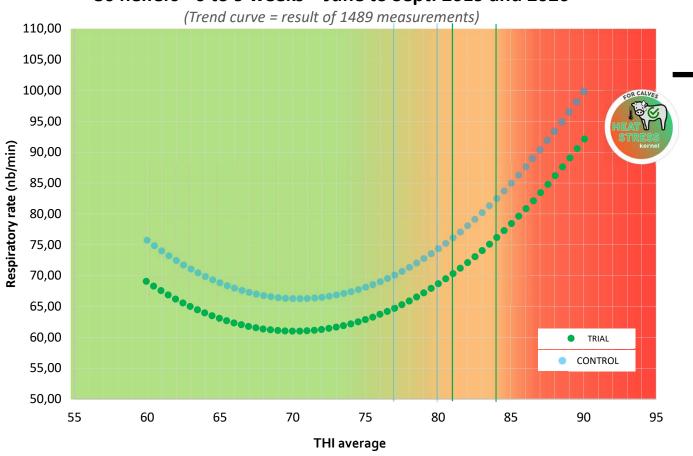
Purpose a nutritional solution to mitigate negative effects of heat stress during the milky phase.

BONILAIT APPROACH based on RR

80 heifers - 0 to 9 weeks - June to Sept. 2019 and 2020

With supplementation

Low heat stress (RR<70)	THI average < 77
Moderate heat stress (RR 70-75)	THI average 77-80
High heat stress (RR>75)	THI average > 80



Purpose a nutritional solution to mitigate negative effects of heat stress during the milky phase.

BONILAIT APPROACH based on RR

80 heifers - 0 to 9 weeks - June to Sept. 2019 and 2020

The threshold of the critical THI

Pushed from 80 to 84

thanks to the kernel Heat Stress Control.

	WITHOUT supplementation	WITH supplementation
Low heat stress (RR<70)	THI average < 77	THI average < 81
Moderate heat stress (RR 70-75)	THI average 77-80	THI average 81-84
High heat stress (RR>75)	THI average > 80	THI average > 84

Purpose a nutritional solution to mitigate negative effects of heat stress during the milky phase.

Trial results

Humidity

									МП	110	,							
	0	5	10	15	20	25	30	40	45	50	55	60	65	70	75	80	85	90
21	63	64	64	64	65	65	65	66	66	67	67	67	68	68	68	69	69	69
22	64	64	65	65	66	66	66	67	67	68	68	69	69	69	70	70	70	71
23	65	65	66	66	67	67	67	68	69	69	70	70	70	71	71	72	72	73
24	66	66	67	67	68	68	69	70	70	70	71	71	72	72	73	73	74	74
25	67	67	68	68	69	69	70	71	71	72	72	73	73	74	74	75	75	76
26	67	68	69	69	70	70	71	72	73	73	74	74	75	75	76	77	77	78
27	68	69	69	70	71	71	72	73	74	74	75	76	76	77	77	78	79	79
28	69	70	70	71	72	72	73	74	75	76	76	77	78	78	79	80	80	81
29	70	71	71	72	73	73	74	76	76	77	78	78	79	80	81	81	82	83
30	71	71	72	73	74	74	75	77	78	78	79	80	81	81	82	83	84	84
31	71	72	73	74	75	76	76	78	79	80	80	81	82	83	84	85	85	86
32	72	73	74	75	76	77	77	79	80	FORC	WES .	83	84	84	85	86	87	88
33	73	74	75	76	77	78	79	80	81	HEAT STRI		84	85	86	87	88	89	90
34	74	75	76	77	78	79	80	82	83		ternel	85	86	87	88	89	90	91
35	75	76	77	78	79	80	81	83	84	85	86	87	88	89	90	91	92	93
36	75	77	78	79	80	81	82	84	85	86	87	88	89	90	91	93	94	95
37	76	77	79	80	81	82	83	85	86	87	89	90	91	92	93	94	95	96
38	77	78	79	81	82	83	84	86	88	89	90	91	92	93	95	96	97	98
39	78	79	80	82	83	84	85	88	89	90	91	92	94	95	96	97	99	100
40	79	80	81	82	84	85	86	89	90	91	93	94	95	96	98	99	100	101
41	80	81	82	83	85	86	87	90	91	93	94	95	97	98	99	101	102	103

The threshold of the critical THI

Pushed from 80 to 84

thanks to the kernel Heat Stress Control.

	WITHOUT supplementation	WITH supplementation		
Low heat stress	THI average	THI average		
(RR<70)	< 77	< 81		
Moderate heat	THI average	THI average		
stress (RR 70-75)	77-80	81-84		
High heat stress	THI average	THI average		
(RR>75)	> 80	> 84		

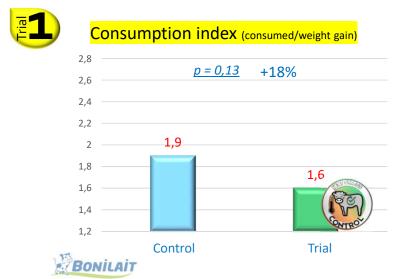
Purpose a nutritional solution to mitigate negative effects of heat stress during the milky phase.

Critical THI pushed from 80 to 84

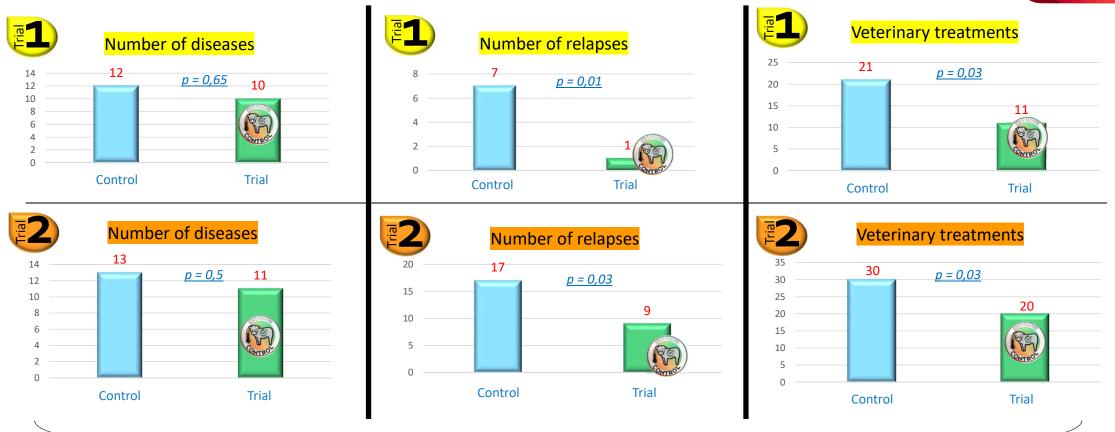
- Better technical and economic performance;
- Better animal health and welfare;
- Gain of 3° or 10 moisture points.

The kernel Heat stress allows the calf, to better combat against thermal stress and to adapt to its environment.

Growth performance and food efficiency



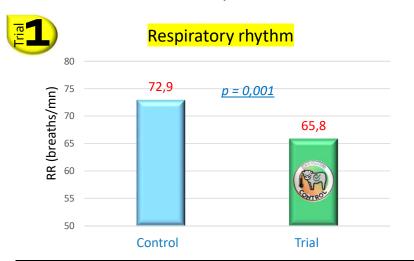
+ 16 to 30% ADG with the kernel (significant)

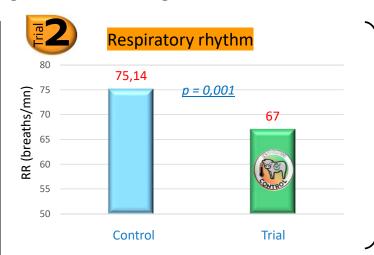

+ 18 to 27% food efficiency

With the kernel (significant)

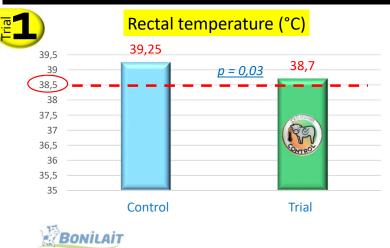
Health status

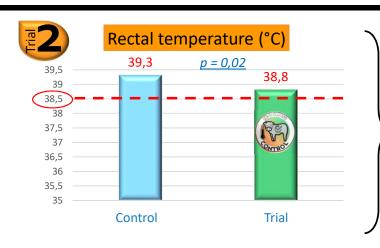
Significant decreased of relapses (diarrhea & respiratory problems) and therefore reduced number of veterinary treatments



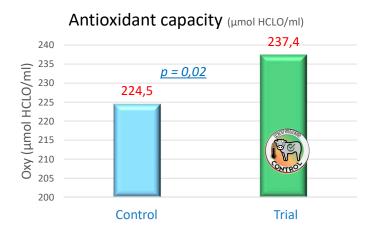


RR RESPIRATORY RHYTHM AND RT RECTAL TEMPERATURE


Respiratory rhythm and rectal temperature are two **very representative parameters of heat stress**. They are non-exhaustive and easily measurable in breeding conditions, and give direct indications of the degree of stress.



-7 to -8 breaths/min RR with the kernel (significant)



-0,5 to -0,55°C of RT with the kernel (significant)

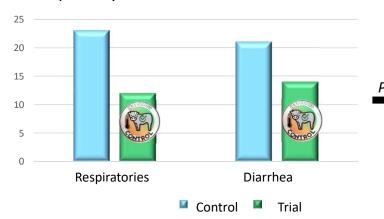
Antioxidants status

Significant improvement of the antioxidant capacity thanks to the use of the nucleus

→ The use of the kernel decrease the production of free radicals

Better resistance of the animals to oxidative stress caused by extended and serious heat stress

Economic gain


Economic gain 32 €/calf

with the kernel

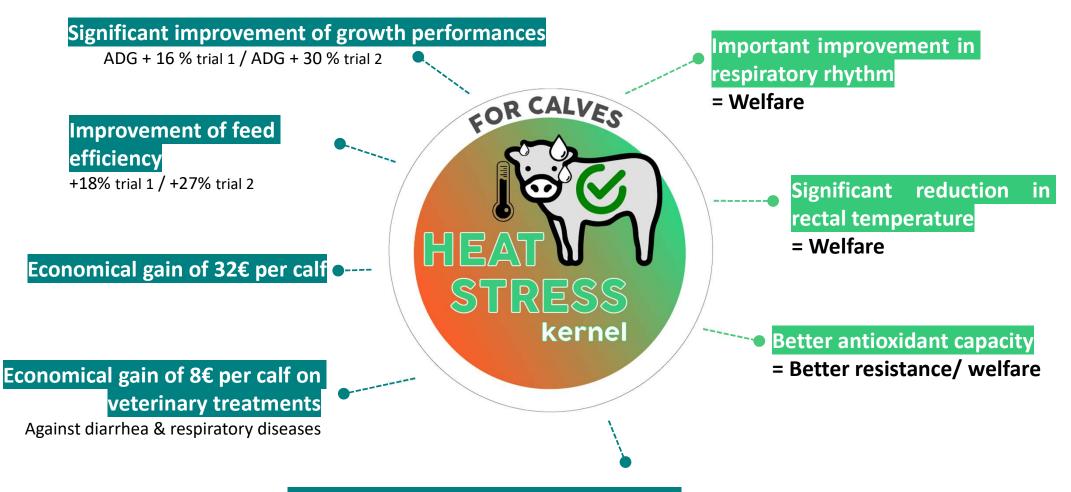
Price MP 1800€/T

Respiratory diseases and diarrhea (2 trials)

Respiratory treatment cost= 15€; Diarrhea treatment cost: 25€

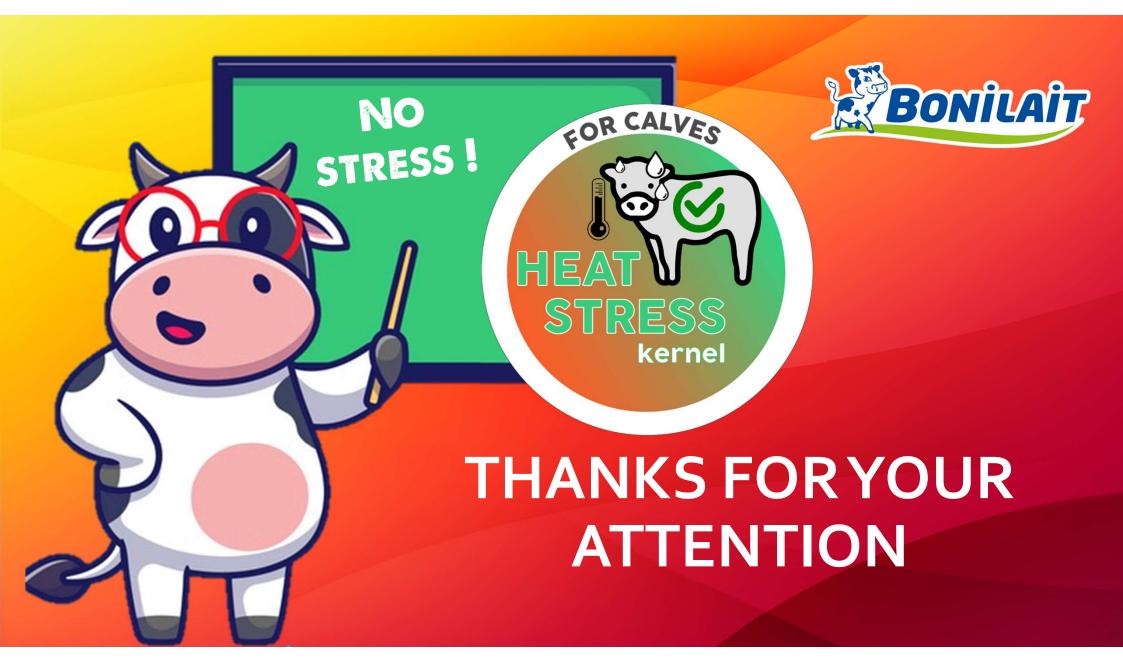
(average costs given by our Italian partners)

Economic gain 8 €/calf


for veterinary treatments against diarrhea and respiratory diseases

The use of the "Heat Stress Control" kernel during the 2 trials allowed:

Significant reduction of economic losses caused by relapses due to diarrhea and respiratory diseases, and therefore the number of veterinary treatments



HEAT STRESS CONTROL kernel will be soon incorporated in some formulas of our milk replacers

